Approximation of a zero point of monotone operators with nonsummable errors
نویسنده
چکیده
In this paper, we study an iterative scheme for two different types of resolvents of a monotone operator defined on a Banach space. These resolvents are generalizations of resolvents of a monotone operator in a Hilbert space. We obtain iterative approximations of a zero point of a monotone operator generated by the shrinking projection method with errors in a Banach space. Using our result, we discuss some applications.
منابع مشابه
A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملCommon Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms
In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...
متن کاملA Forward-Backward Projection Algorithm for Approximating of the Zero of the Sum of Two Operators
In this paper, a forward-backward projection algorithm is considered for finding zero points of the sum of two operators in Hilbert spaces. The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly monotone operator and a maximal monotone operator. We apply the result for solving the variational inequality problem, fixed po...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کامل